## **Microstrip** Antennas

#### Prof. Girish Kumar Electrical Engineering Department, IIT Bombay

<u>gkumar@ee.iitb.ac.in</u> (022) 2576 7436

#### Rectangular Microstrip Antenna (RMSA)



#### **Microwave Integrated Circuits (MIC) vs MSA**

| Parameters                               | MIC                                                 | MSA                             |
|------------------------------------------|-----------------------------------------------------|---------------------------------|
| Dielectric<br>Constant (ε <sub>r</sub> ) | Large                                               | Small                           |
| Thickness (h)                            | Small                                               | Large                           |
| Width (W)                                | Generally Small<br>(impedance dependent)            | Generally Large                 |
| Radiation                                | Minimum (small fringing fields)                     | Maximum (large fringing fields) |
| Examples                                 | Filters, power dividers, couplers, amplifiers, etc. | Antennas                        |

## Substrates for MSA

| Substrate         | Dielectric<br>Constant (ε <sub>r</sub> ) | Loss tangent<br>(tanδ) | Cost           |
|-------------------|------------------------------------------|------------------------|----------------|
| Alumina           | 9.8                                      | 0.001                  | Very<br>High   |
| Glass Epoxy       | 4.4                                      | 0.02                   | Low            |
| Duroid /<br>Arlon | 2.2                                      | 0.0009                 | Very<br>High   |
| Foam              | 1.05                                     | 0.0001                 | Low/<br>Medium |
| Air               | 1                                        | 0                      | NA             |

## Advantages

- Light weight, low volume, low profile, planar configuration, which can be made conformal
- ➢ Low fabrication cost and ease of mass production
- Linear and circular polarizations are possible
- > Dual frequency antennas can be easily realized
- Feed lines and matching network can be easily integrated with antenna structure

# Disadvantages

- ➢ Narrow bandwidth (1 to 5%)
- Low power handling capacity
- Practical limitation on Gain (around 30 dB)
- Poor isolation between the feed and radiating elements
- Excitation of surface waves
- Tolerance problem requires good quality substrate, which are expensive
- Polarization purity is difficult to achieve
- Size is large at lower frequency

# Applications

- Pagers and mobile phones
- Doppler and other radars
- Satellite communication
- Radio altimeter
- Command guidance and telemetry in missiles
- Feed elements in complex antennas
- Satellite navigation receiver
- Biomedical radiator



# **MSA Feeding Techniques**





# **Microstrip Line Feed**



## Microstrip Feed (contd.)



RMSA with microstrip line feed along its (a) nonradiating edge, (b) radiating edge with inset feed, and (c) radiating edge with quarter-wave transformer.

#### **Electromagnetically Coupled Feed**



# **Aperture Coupled Feed**



## **RMSA: Resonance Frequency**



$$L_e = L + 2\Delta L$$

 $W_e = W + 2\Delta W$  $\Delta L \simeq \frac{h}{\sqrt{\epsilon_e}}$ 

$$f_0 = \frac{c}{2\sqrt{\epsilon_e}} \left[ \left(\frac{m}{L}\right)^2 + \left(\frac{n}{W}\right)^2 \right]^{1/2}$$

where m and n are orthogonal modes of excitation. Fundamental mode is  $TM_{10}$  mode, where m =1 and n = 0.

### **RMSA** – Characterization



Fundamental TM<sub>10</sub> mode of RMSA: (a) E-field distribution, (b) ( — ) voltage and (  $\cdot \cdot \cdot$  ) current variation, (c) two radiating slots, and (d) equivalent transmission line model.

# **RMSA:** Design Equations

$$\boldsymbol{\epsilon}_{e} = \frac{(\boldsymbol{\epsilon}_{r}+1)}{2} + \frac{(\boldsymbol{\epsilon}_{r}-1)}{2} \left[1 + \frac{10h}{W}\right]^{-1/2}$$

$$W = \frac{c}{2f_0\sqrt{\frac{(\boldsymbol{\epsilon}_r + 1)}{2}}}$$

Smaller or larger W can be taken than the W obtained from this expression. BW  $\alpha$  W and Gain  $\alpha$  W

$$L_e = L + 2\Delta L = \frac{\lambda_0}{2\sqrt{\epsilon_e}} = \frac{c}{2f_0\sqrt{\epsilon_e}}$$

Choose feed-point *x* between L/6 to L/4.

# **RMSA:** Design Example

Design a RMSA for Wi-Fi application (2.400 to 2.483 GHz)

Chose Substrate:  $\varepsilon_r = 2.32$ , h = 0.16 cm and tan  $\delta = 0.001$ 

$$W = \frac{c}{2f_0 \sqrt{\frac{(\epsilon_r + 1)}{2}}} = 3 \times 10^{10} / (2 \times 2.4415 \times 10^9 \times \sqrt{1.66})$$
  

$$2f_0 \sqrt{\frac{(\epsilon_r + 1)}{2}} = 4.77 \text{ cm.} \quad W = 4.7 \text{ cm is taken}$$
  

$$\epsilon_e = \frac{(\epsilon_r + 1)}{2} + \frac{(\epsilon_r - 1)}{2} \left[ 1 + \frac{10h}{W} \right]^{-1/2} = 2.23$$
  

$$L_e = \frac{c}{2f_0 \sqrt{\epsilon_e}} = 3 \times 10^{10} / (2 \times 2.4415 \times 10^9 \times \sqrt{2.23}) \text{ cm}$$
  

$$L = L - 2 \text{ AL} = 4.11 - 2 \times 0.16 / \sqrt{2.23} = 3.9 \text{ cm}$$

#### **RMSA:** Design Example – Simulation using IE3D

L = 3.9 cm, W = 4.7 cm, x = 0.7 cm  $\varepsilon_r = 2.32$ , h = 0.16 cm and tan  $\delta = 0.001$ 



 $Z_{in}=54\Omega~$  at f=2.414~GHz

BW for  $|S11| \le -10$  dB is from 2.395 to 2.435 GHz = 40 MHz

Designed f = 2.4415 and Simulated f = 2.414 GHz % error = 1.1%. Also, BW is small. SOLUTION: Increase h and reduce L

#### **Effect of Various Parameters on Performance of RMSA**



Substrate parameters:  $\varepsilon_r = 2.55$ , h = 0.159 cm, and tan  $\delta = 0.001$ 

*P*robe diameter = 0.12 cm for SMA connector.

RMSA is analyzed using commercially available IE3D software.

#### Effect of Feed Point Location (x)



(a) Input impedance and (b) VSWR plots of the RMSA for three different values of x, (---) 0.55, (---) 0.60, and (---) 0.65 cm, and (c) its radiation pattern at 2.975 GHz for x = 0.65 cm; (---) E-plane copolar and cross-polar and (---) H-plane copolar. For Infinite Ground Plane

With increase in *x*, input impedance plot shifts right towards higher impedance values.

# Effect of Width (W)



(a) (b) (a) Input impedance and (b) VSWR plots of the RMSA for four different W:  $(\cdot \cdot \cdot) 2, (---) 3, (---) 4, (---), 5$  cm.

With increase in W, aperture area,  $\varepsilon_e$  and fringing fields increase, hence frequency decreases and input impedance plot shifts towards lower impedance values. BW  $\alpha$  W and Gain  $\alpha$  W

# Effect of Thickness (h)



As h increases, fringing fields and probe inductance increase, frequency decreases and input impedance plot shifts upward.

However, 
$$\frac{h}{\lambda_0} \le \frac{0.3}{2\pi\sqrt{\epsilon_r}}$$
 to reduce surface waves

### **Effect of Probe Diameter**



(a) Input impedance and (b) VSWR plots of the RMSA for two different connectors: ( —— ) SMA and ( - - - ) N-type.

As probe diameter decreases, its inductance increases, so resonance frequency decreases and input impedance locus moves upward to the inductive region.

# Effect of Loss Tangent (tan $\delta$ )



(a)

(Ь)

(a) Input impedance and (b) VSWR plots of the RMSA for different values of tan  $\delta$ : ( — — ) 0.001, ( - - - ) 0.01, and ( – - – ) 0.02.

With increase in tan  $\delta$ , dielectric losses increase, so input impedance locus moves left towards lower impedance value. BW increases but efficiency and gain decrease.

# Effect of Dielectric Constant $(\varepsilon_r)$

Effect of  $\epsilon_r$  on the Performance of RMSA (h = 0.159 cm and tan  $\delta = 0.001$ )

| €r   | L    | W    | <i>x</i> | f <sub>0</sub> | R <sub>in</sub> | BW    | Gain |
|------|------|------|----------|----------------|-----------------|-------|------|
|      | (cm) | (cm) | (cm)     | (GHz)          | (Ω)             | (MHz) | (dB) |
| 1    | 4.65 | 6.2  | 1.00     | 2.997          | 54              | 74    | 10.0 |
| 2.55 | 3.0  | 4.0  | 0.65     | 2.974          | 62              | 64    | 6.8  |
| 4.3  | 2.3  | 3.1  | 0.40     | 2.986          | 52              | 49    | 5.6  |
| 9.8  | 1.51 | 2.0  | 0.20     | 3.002          | 51              | 30    | 4.4  |

With decrease in  $\varepsilon_r$ , both *L* and *W* increase, which increases fringing fields and aperture area, hence both BW and Gain increase.

#### **RMSA** – Pattern for Different $\varepsilon_r$ (TM<sub>10</sub> mode)



With increase in  $\varepsilon_r$ , size of the antenna decreases for same resonance frequency.

Hence, gain decreases and HPBW increases.

#### **RMSA** – Pattern for Different $\varepsilon_r$ (TM<sub>30</sub> mode)



For TM<sub>30</sub> mode, L<sub>e</sub> =  $3 \lambda_0 / (2 \sqrt{\epsilon_e})$ 



So, two radiating slots will be at a distance of  $\lambda_0$  yielding grating lobe in E-plane.

#### **RMSA** – Dual Polarization ( $TM_{10}$ and $TM_{01}$ modes)



L = 10.1 cm and W = 7.9 cmOrthogonal Feeds at: x = 3.8 cm and y = 2.9 cmSubstrate Parameters:

Measured resonance frequencies are 712 MHz and 913 MHz for two orthogonal modes

 $\varepsilon_r = 4.3, h = 0.16 \text{ cm}, \tan \delta = 0.02$ 

# **Effect of Finite Ground Plane**



(a) Input impedance and (b) VSWR plots of the RMSA for ( —— ) finite and ( - - - ) infinite ground planes, and (c) its radiation pattern on the finite ground plane: ( —— ) E-plane copolar and cross-polar and ( - - - ) H-plane copolar.

Finite Ground Plane Size is taken as  $L_g = L + 6h + 6h$  and  $W_g = W + 6h + 6h$ 

#### MSA - BW Variation with h and f



(a) Variation of percentage BW and efficiency of a square MSA versus  $h/\lambda_0$ . (----)  $\epsilon_r = 2.2$ , (---)  $\epsilon_r = 10$  and (b) variation of percentage BW with frequency for three values of h and  $\epsilon_r = 2.32$ : (----) 0.318, (---) 0.159, (---) 0.079 cm.

### Square MSA in Air – VSWR Plot

Square MSA on a finite ground plane.

Low cost - Metallic plate suspended in air and fed by a co-axial feed.

BW for VSWR ≤ 2 is 95 MHz at 1.8 GHz (% BW ~ 5%)



#### Square MSA in Air – Radiation Pattern



#### **MSA** – Suspended Configurations



Comparison of Suspended Configurations of Square MSA  $(L = 14 \text{ cm}, \Delta = 2 \text{ cm}, h = 0.159 \text{ cm}, x = 6.5 \text{ cm})$ 

| Configuration                     | Frequency Range for VSWR $\leq$ 2 (MHz) | BW<br>(MHz) | Gain<br>(dB) |
|-----------------------------------|-----------------------------------------|-------------|--------------|
| Suspended with $\epsilon_r = 1$   | 935 to 1,019                            | 84          | 9.5          |
| Suspended with $\epsilon_r = 2.3$ | 889 to 970                              | 81          | 9.3          |
| Suspended with $\epsilon_r = 4.3$ | 858 to 934                              | 76          | 9.2          |
| Inverted with $\epsilon_r = 2.3$  | 909 to 988                              | 79          | 9.5          |
| Inverted with $\epsilon_r = 4.3$  | 880 to 955                              | 75          | 9.4          |

# **CMSA:** Resonance Frequency



| Mode                                                     | K <sub>nm</sub>                          |
|----------------------------------------------------------|------------------------------------------|
| TM <sub>11</sub><br>TM <sub>21</sub><br>TM <sub>02</sub> | 1.84118<br>3.05424<br>3.83171<br>5.22140 |

For Fundamental  $TM_{11}$  Mode:  $f_0 \simeq 8.791 / [(a + h/\sqrt{\varepsilon_r}) \sqrt{\varepsilon_e}]$  GHz where *a* and *h* are in cm and  $\varepsilon_e \le \varepsilon_r$ 

where  $K_{nm}$  is the mth root of the derivative of the Bessel function of order *n* 

Design Equation:  $a \simeq 8.791 / (f_0 \sqrt{\varepsilon_e}) - h / \sqrt{\varepsilon_r}$ 

Choose feed-point *x* between 0.3*a* to 0.5*a* 

# **CMSA:** Simulation using IE3D



Simulated BW = 1.730 to 1.768 GHz = 38 MHz ( $\simeq 2\%$ )

### **CMSA:** Radiation Pattern

$$E_{\theta} = [J_{n+1}(k_0 a \sin \theta) - J_{n-1}(k_0 a \sin \theta)] \cos n\phi$$

 $E_{\phi} = [J_{n+1}(k_0 a \sin \theta) + J_{n-1}(k_0 a \sin \theta)] \cos \theta \sin n\phi$ where  $J_{n+1}$  and  $J_{n-1}$  are the Bessel functions of order n + 1 and n - 1, respectively



Current Distribution and Radiation Pattern at 1.75 GHz

# CMSA: Higher Order TM<sub>21</sub> Mode



 $a = 3 \text{ cm}, h = 0.318 \text{ cm}, \varepsilon_r = 2.55,$   $tan \ \delta = 0.001, x = 1.6 \text{ cm}$ For  $TM_{21}$  Mode:  $f_0 \simeq 3.05424 \ x \ 30 \ / \ [2\pi \ (3 + 0.318 \ / \sqrt{2.55}) \ \sqrt{2.45} \ ] = 2.912$  GHz Simulated  $f_0 = 2.94$  GHz



| Mode             | K <sub>nm</sub> |
|------------------|-----------------|
| TM <sub>11</sub> | 1.84118         |
| TM <sub>21</sub> | 3.05424         |
| TM <sub>02</sub> | 3.83171         |
| TM <sub>12</sub> | 5.33140         |

# CMSA: Higher Order TM<sub>02</sub> Mode



a = 3 cm, h = 0.318 cm,  $\varepsilon_r = 2.55$ , tan  $\delta = 0.001$ , x = 0.9 cm For  $TM_{02}$  Mode:  $f_0 \simeq 3.83171 \times 30 / [2\pi (3 + 0.318/\sqrt{2.55}) \sqrt{2.45}] = 3.654$  GHz Simulated Results: Good impedance match at 3.63 GHz





Used as N-way Power Divider with input at the center.

#### Broadband CMSA – Metallic Plate in Air



a = 3.2 cm, h = 0.5 cm,  $\varepsilon_r = 1$ Probe Dia. = 0.3 cm (N-type Connector) Taken x = 1.2 cm

BW = 2.378 to 2.529 GHz = 151 MHz ( $\simeq 6\%$ )



#### **Broadband CMSA** – Radiation Pattern



## Semi-Circular MSA





For a = 3 cm,  $\varepsilon_r = 1$ , and h = 0.65 cm, N-type Connector at x = 1.0 cm BW = 2.525 to 2.640 GHz =115 MHz (4.4%), Gain = 9.0 dB

In comparison: CMSA of a = 3 cm and x = 1.1 cm BW = 2.514 to 2.699 GHz = 185 MHz (7.1%), Gain = 9.5 dB

## Equilateral Triangular MSA (ETMSA)



# ETMSA Design - *TM*<sub>10</sub> Mode



For 
$$f_0 = 3$$
 GHz,  $\varepsilon_r = 2.55$ ,  $h = 0.159$  cm  
 $S_e \simeq (2 \ge 30 / (3 \ge 3 \le \sqrt{2.35}) = 4.35$  cm  
 $S = S_e - 4 \ge 0.159 / \sqrt{2.55} = 3.95$  cm  
Taken  $S = 4$  cm,  $H = 3.46$  cm,  $y = 1.52$  cm

 $f_0 = 3 \text{ GHz}, \text{BW} = 40 \text{ MHz}, \text{Gain} = 6.26 \text{ dB}$ 



Current Distribution and Radiation Pattern at 3.0 GHz