Microstrip Antennas

Prof. Girish Kumar

Electrical Engineering Department, IIT Bombay

gkumar@ee.iitb.ac.in (022) 25767436

Rectangular Microstrip Antenna (RMSA)

Side View

Microwave Integrated Circuits (MIC) vs MSA

Parameters	MIC	MSA
Dielectric Constant $\left(\varepsilon_{\mathrm{r}}\right)$	Large	Small
Thickness (h)	Small	Large
Width (W)	Generally Small (impedance dependent)	Generally Large
Radiation	Minimum (small fringing fields)	Maximum (large fringing fields)
Examples	Filters, power dividers, couplers, amplifiers, etc.	Antennas

Substrates for MSA

Substrate	Dielectric Constant $\left(\varepsilon_{\mathrm{r}}\right)$	Loss tangent $(\tan \delta)$	Cost
Alumina	9.8	0.001	Very High
Glass Epoxy	4.4	0.02	Low
Duroid / Arlon	2.2	0.0009	Very High
Foam	1.05	0.0001	Low/ Medium
Air	1	0	NA

Advantages

> Light weight, low volume, low profile, planar configuration, which can be made conformal
$>$ Low fabrication cost and ease of mass production
\Rightarrow Linear and circular polarizations are possible
$>$ Dual frequency antennas can be easily realized
$>$ Feed lines and matching network can be easily integrated with antenna structure

Disadvantages

$>$ Narrow bandwidth (1 to 5\%)
> Low power handling capacity
$>$ Practical limitation on Gain (around 30 dB)
$>$ Poor isolation between the feed and radiating elements
> Excitation of surface waves
$>$ Tolerance problem requires good quality substrate, which are expensive
$>$ Polarization purity is difficult to achieve
$>$ Size is large at lower frequency

Applications

> Pagers and mobile phones
$>$ Doppler and other radars
> Satellite communication
$>$ Radio altimeter
$>$ Command guidance and telemetry in missiles
$>$ Feed elements in complex antennas
$>$ Satellite navigation receiver
> Biomedical radiator

Various Microstrip Antenna Shapes

Square

Semicircular

Circular

Annular ring

Triangular

Square ring

MSA Feeding Techniques

Coaxial Feed

Microstrip Line Feed

Microstrip Feed (contd.)

RMSA with microstrip line feed along its (a) nonradiating edge, (b) radiating edge with inset feed, and (c) radiating edge with quarter-wave transformer.

Electromagnetically Coupled Feed

Aperture Coupled Feed

RMSA: Resonance Frequency

$L_{e}=L+2 \Delta L$
$W_{e}=W+2 \Delta W$
$\Delta L \simeq \frac{h}{\sqrt{\epsilon_{e}}}$

$$
f_{0}=\frac{c}{2 \sqrt{\epsilon_{e}}}\left[\left(\frac{m}{L}\right)^{2}+\left(\frac{n}{W}\right)^{2}\right]^{1 / 2}
$$

where m and n are orthogonal modes of excitation.
Fundamental mode is TM_{10} mode, where $\mathrm{m}=1$ and $\mathrm{n}=0$.

RMSA - Characterization

Fundamental TM $_{10}$ mode of RMSA: (a) E-field distribution, (b) (\quad _) voltage and (\cdots) current variation, (c) two radiating slots, and (d) equivalent transmission line model.

RMSA: Design Equations

$$
\epsilon_{e}=\frac{\left(\epsilon_{r}+1\right)}{2}+\frac{\left(\epsilon_{r}-1\right)}{2}\left[1+\frac{10 h}{W}\right]^{-1 / 2}
$$

$$
W=\frac{c}{\square} \text { Smaller or larger } W \text { can be taken than }
$$

$$
2 f_{0} \sqrt{\frac{\left(\epsilon_{r}+1\right)}{2}} \quad \begin{array}{r}
\text { the } \mathrm{W} \text { obtained from this express } \\
\mathrm{BW} \alpha \mathrm{~W} \text { and Gain } \alpha \mathrm{W}
\end{array}
$$

$$
L_{e}=L+2 \Delta L=\frac{\lambda_{0}}{2 \sqrt{\epsilon_{e}}}=\frac{c}{2 f_{0} \sqrt{\epsilon_{e}}}
$$

Choose feed-point x between $L / 6$ to $L / 4$.

RMSA: Design Example

Design a RMSA for Wi-Fi application (2.400 to 2.483 GHz)
Chose Substrate: $\varepsilon_{\mathrm{r}}=2.32, \mathrm{~h}=0.16 \mathrm{~cm}$ and $\tan \delta=0.001$

$$
\left.\begin{array}{l}
W=\frac{c}{W f_{0} \sqrt{\frac{\left(\epsilon_{r}+1\right)}{2}}}=3 \times 10^{10} /\left(2 \times 2.4415 \times 10^{9} \times \sqrt{ } 1.66\right) \\
=4.77 \mathrm{~cm} . \mathrm{W}=4.7 \mathrm{~cm} \text { is taken }
\end{array}\right] \begin{aligned}
& \epsilon_{e}=\frac{\left(\epsilon_{r}+1\right)}{2}+\frac{\left(\epsilon_{r}-1\right)}{2}\left[1+\frac{10 h}{W}\right]^{-1 / 2}=2.23 \\
& \mathrm{~L}_{\mathrm{e}}=\frac{c}{2 f_{0} \sqrt{\epsilon_{e}}}=3.11 \mathrm{~cm}
\end{aligned} \quad \begin{aligned}
& \mathrm{L}=3 \times 10^{10} /\left(2 \times 2.4415 \times 10^{9} \times \sqrt{ } 2.23\right) \mathrm{cm} \\
& \mathrm{~L}=\mathrm{L}_{\mathrm{e}}-2 \Delta \mathrm{~L}=4.11-2 \times 0.16 / \sqrt{ } 2.23=3.9 \mathrm{~cm}
\end{aligned}
$$

RMSA: Design Example - Simulation using IE3D

$$
\begin{aligned}
& \mathbf{L}=\mathbf{3 . 9} \mathbf{~ c m}, \mathbf{W}=\mathbf{4 . 7} \mathbf{~ c m}, \mathbf{x}=\mathbf{0 . 7} \mathbf{~ c m} \\
& \varepsilon_{\mathrm{r}}=2.32, \mathrm{~h}=0.16 \mathrm{~cm} \text { and } \tan \delta=0.001
\end{aligned}
$$

$\mathrm{Z}_{\text {in }}=54 \Omega$ at $\mathrm{f}=2.414 \mathrm{GHz}$

BW for $|S 11| \leq-10 \mathrm{~dB}$ is from 2.395 to $2.435 \mathrm{GHz}=40 \mathrm{MHz}$

Designed $\mathrm{f}=2.4415$ and Simulated $\mathrm{f}=2.414 \mathrm{GHz}$ $\%$ error $=1.1 \%$. Also, BW is small. SOLUTION: Increase h and reduce L

Effect of Various Parameters on Performance of RMSA

Substrate parameters: $\varepsilon_{r}=2.55, h=0.159 \mathrm{~cm}$, and tan $\delta=0.001$ Probe diameter $=0.12 \mathrm{~cm}$ for SMA connector .

RMSA is analyzed using commercially available IE3D software.

Effect of Feed Point Location (x)

(a)

(b)
(a) Input impedance and (b) VSWR plots of the RMSA for three different values of $x,(---) 0.55,(---) 0.60$, and (-) 0.65 cm , and (c) its radiation pattern at 2.975 GHz for $x=0.65 \mathrm{~cm}$; (—) E-plane copolar and cross-polar and (- -) H-plane copolar. For Infinite Ground Plane

With increase in x, input impedance plot shifts right towards higher impedance values.

Effect of Width (W)

(b)
(a) Input impedance and (b) VSWR plots of the RMSA for four different W: $(\cdots) 2,(-) 3,(---) 4,(---), 5 \mathrm{~cm}$.
With increase in W, aperture area, ε_{e} and fringing fields increase, hence frequency decreases and input impedance plot shifts towards lower impedance values. BW αW and Gain αW

Effect of Thickness (h)

(a)

(b)
(a) Input impedance and (b) VSWR plots of the RMSA for two different values of $h:(---) 0.159$ and (-) 0.318 cm .

As h increases, fringing fields and probe inductance increase, frequency decreases and input impedance plot shifts upward.

However, $\quad \frac{h}{\lambda_{0}} \leq \frac{0.3}{2 \pi \sqrt{\epsilon_{r}}}$ to reduce surface waves

Effect of Probe Diameter

(b)
(a) Input impedance and (b) VSWR plots of the RMSA for two different connectors: (——) SMA and (---) N-type.

As probe diameter decreases, its inductance increases, so resonance frequency decreases and input impedance locus moves upward to the inductive region.

Effect of Loss Tangent (tan δ)

(a)

(b)
(a) Input impedance and (b) VSWR plots of the RMSA for different values of $\tan \delta:(-) 0.001,(---) 0.01$, and $(---) 0.02$.

With increase in $\tan \delta$, dielectric losses increase, so input impedance locus moves left towards lower impedance value. BW increases but efficiency and gain decrease.

Effect of Dielectric Constant $\left(\varepsilon_{r}\right)$

Effect of ϵ_{I} on the Performance of RMSA ($h=0.159 \mathrm{~cm}$ and $\tan \delta=0.001$)

| | \boldsymbol{L} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\boldsymbol{\epsilon}$ | $\boldsymbol{c m})$ | \boldsymbol{W} |
| $(\mathbf{c m})$ | | |

With decrease in ε_{r}, both L and W increase, which increases fringing fields and aperture area, hence both BW and Gain increase.

RMSA - Pattern for Different $\varepsilon_{r}\left(\mathrm{TM}_{10}\right.$ mode $)$

With increase in ε_{r}, size of the antenna decreases for same resonance frequency.

Hence, gain decreases and HPBW increases.

RMSA - Pattern for Different $\varepsilon_{r}\left(\mathrm{TM}_{30}\right.$ mode $)$

For TM_{30} mode,

$$
\mathrm{L}_{\mathrm{e}}=3 \lambda_{0} /\left(2 \sqrt{ } \varepsilon_{e}\right)
$$

For $\varepsilon_{r}=2.32, \mathrm{~L}_{\mathrm{e}} \simeq \lambda_{0}$

So, two radiating slots will be at a distance of
λ_{0} yielding grating lobe in E-plane.

RMSA - Dual Polarization (TM_{10} and TM_{01} modes)

$L=10.1 \mathrm{~cm}$ and $W=7.9 \mathrm{~cm}$
Orthogonal Feeds at:

$$
x=3.8 \mathrm{~cm} \text { and } y=2.9 \mathrm{~cm}
$$

Measured resonance frequencies are 712 MHz and 913 MHz for two orthogonal modes

Substrate Parameters:

$$
\varepsilon_{r}=4.3, h=0.16 \mathrm{~cm}, \tan \delta=0.02
$$

Effect of Finite Ground Plane

(a)

(b)

(c)
(a) Input impedance and (b) VSWR plots of the RMSA for (-)) finite and (--) infinite ground planes, and (c) its radiation pattern on the finite ground plane: (\quad —) E-plane copolar and cross-polar and (---) H-plane copolar.

Finite Ground Plane Size is taken as $L_{g}=L+6 h+6 h$ and $W_{g}=W+6 h+6 h$

MSA - BW Variation with h and f

Substrate thickness h / λ_{0} (a)

Frequency (GHz)
(b)
(a) Variation of percentage BW and efficiency of a square MSA versus h / λ_{0}. $(-) \epsilon_{r}=2.2,(\cdots) \epsilon_{r}=10$ and (b) variation of percentage BW with frequency for three values of h and $\epsilon_{r}=2.32$: $(-) 0.318,(\cdots) 0.159$, (---) 0.079 cm .

Square MSA in Air - VSWR Plot

Square MSA on a finite ground plane.

Low cost - Metallic plate suspended in air $\frac{\text { 宩 }}{3}$ and fed by a co-axial feed.

BW for VSWR ≤ 2 is 95 MHz at 1.8 GHz (\% BW 工 5\%)

Square MSA in Air - Radiation Pattern

- E-theta, phi= 0. (deg)
-a- E-phi, phi=0. (deg)
E-theta, phi= 90 . (deg)
\rightarrow E-phi, phi= 90. (deg)

Radiation Pattern at 1.8 GHz

$\mathrm{F} / \mathrm{B}=15 \mathrm{~dB}$
Cross Polar $\leq 20 \mathrm{~dB}$

MSA - Suspended Configurations

$$
\epsilon_{\mathrm{eq}}=\frac{\epsilon_{r}(h+\Delta)}{\epsilon_{r} \Delta+h}
$$

Comparison of Suspended Configurations of Square MSA

$$
(L=14 \mathrm{~cm}, \Delta=2 \mathrm{~cm}, h=0.159 \mathrm{~cm}, x=6.5 \mathrm{~cm})
$$

Configuration	Frequency Range for VSWR $\leq \mathbf{2}(\mathbf{M H z})$	BW $(\mathbf{M H z})$	Gain $(\mathbf{d B})$
Suspended with $\epsilon_{r}=1$	935 to 1,019	84	9.5
Suspended with $\epsilon_{r}=2.3$	889 to 970	81	9.3
Suspended with $\epsilon_{r}=4.3$	858 to 934	76	9.2
Inverted with $\epsilon_{r}=2.3$	909 to 988	79	9.5
Inverted with $\epsilon_{r}=4.3$	880 to 955	75	9.4

CMSA: Resonance Frequency

where $K_{n m}$ is the mth root of the derivative of the Bessel function of order n

Mode	$\boldsymbol{K}_{\text {nm }}$
TM_{11}	1.84118
TM_{21}	3.05424
TM_{02}	3.83171
TM_{12}	5.33140

For Fundamental $T M_{11}$ Mode: $f_{0} \simeq 8.791 /\left[\left(a+h / \sqrt{\varepsilon_{r}}\right) \sqrt{\varepsilon_{e}}\right] \mathrm{GHz}$ where a and h are in cm and $\varepsilon_{e} \leq \varepsilon_{r}$

Design Equation:
$a \simeq 8.791 /\left(f_{0} \sqrt{ } \varepsilon_{e}\right)-h / \sqrt{\varepsilon_{r}}$
Choose feed-point x between $0.3 a$ to $0.5 a$

CMSA: Simulation using IE3D

$$
\begin{aligned}
& a=3 \mathrm{~cm}, h=0.318 \mathrm{~cm}, \varepsilon_{r}=2.55, \\
& \text { tan } \delta=0.001 \text {. Take } x=0.3 a=0.9 \mathrm{~cm} \\
& \text { For Fundamental } T M_{11} \text { Mode: } \\
& f_{0} \simeq 8.791 /[(3+0.318 / \sqrt{ } 2.55) \sqrt{ } 2.45] \\
& \quad=1.756 \mathrm{GHz}
\end{aligned}
$$

Calculated $f_{0}=1.756$, Simulated $f_{0}=1.750 \mathrm{GHz}$, $\%$ error $=0.3 \%$. Simulated BW $=1.730$ to $1.768 \mathrm{GHz}=38 \mathrm{MHz}(\simeq 2 \%)$

CMSA: Radiation Pattern

$$
E_{\theta}=\left[J_{n+1}\left(k_{0} a \sin \theta\right)-J_{n-1}\left(k_{0} a \sin \theta\right)\right] \cos n \phi
$$

$E_{\phi}=\left[J_{n+1}\left(k_{0} a \sin \theta\right)+J_{n-1}\left(k_{0} a \sin \theta\right)\right] \cos \theta \sin n \phi$ where J_{n+1} and J_{n-1} are the Bessel functions of order $n+1$ and $n-1$, respectively

Gain $=6.5 \mathrm{~dB}$
$\mathrm{HPBW}_{\mathrm{E}}=102^{0}$
$\mathrm{HPBW}_{\mathrm{H}}=81^{0}$
X-pol < 27 dB
Current Distribution and Radiation Pattern at 1.75 GHz

CMSA: Higher Order TM $_{21}$ Mode

$$
\begin{aligned}
& a=3 \mathrm{~cm}, h=0.318 \mathrm{~cm}, \varepsilon_{r}=2.55 \\
& \tan \delta=0.001, x=1.6 \mathrm{~cm}
\end{aligned}
$$

For $T M_{21}$ Mode:
$f_{0} \simeq 3.05424 \times 30 /[2 \pi(3+0.318 /$
$\sqrt{ } 2.55) \sqrt{ } 2.45]=2.912 \mathrm{GHz}$
Simulated $f_{0}=2.94 \mathrm{GHz}$

Radiation Pattern at 2.94 GHz

CMSA: Higher Order $T M_{02}$ Mode

$$
\begin{aligned}
& a=3 \mathrm{~cm}, h=0.318 \mathrm{~cm}, \varepsilon_{r}=2.55, \\
& \tan \delta=0.001, x=0.9 \mathrm{~cm}
\end{aligned}
$$

For $T M_{02}$ Mode:
$f_{0} \simeq 3.83171 \times 30 /[2 \pi(3+0.318 /$
$\sqrt{ } 2.55) \sqrt{ } 2.45]=3.654 \mathrm{GHz}$
Simulated Results:
Good impedance match at 3.63 GHz

Mode	$\boldsymbol{K}_{\text {nm }}$
TM_{11}	1.84118
TM_{21}	3.05424
TM_{02}	3.83171
TM_{12}	5.33140

Used as N-way Power Divider with input at the center.

Broadband CMSA - Metallic Plate in Air

Broadband CMSA - Radiation Pattern

Radiation Pattern at 2.45 GHz
$\mathrm{HPBW}_{\mathrm{E}}=58^{0}, \mathrm{HPBW}_{\mathrm{H}}=71^{0}$
Gain $=9.5 \mathrm{~dB}$ at 2.45 GHz
X-pol < 17 dB

Semi-Circular MSA

For $a=3 \mathrm{~cm}, \varepsilon_{r}=1$, and $h=0.65 \mathrm{~cm}$, N-type Connector at $x=1.0 \mathrm{~cm}$
$\mathrm{BW}=2.525$ to $2.640 \mathrm{GHz}=115 \mathrm{MHz}(4.4 \%)$, Gain $=9.0 \mathrm{~dB}$
In comparison: CMSA of $a=3 \mathrm{~cm}$ and $x=1.1 \mathrm{~cm}$
$\mathrm{BW}=2.514$ to $2.699 \mathrm{GHz}=185 \mathrm{MHz}(7.1 \%)$, Gain $=9.5 \mathrm{~dB}$

Equilateral Triangular MSA (ETMSA)

For Fundamental $T M_{10}$ Mode:

$$
f_{0}=\frac{2 c}{3 S_{e} \sqrt{\epsilon_{e}}}
$$

where $S_{e} \simeq S+4 h / \sqrt{ } \varepsilon_{r}$

ETMSA Design - $T M_{10}$ Mode

₹ For $f_{0}=3 \mathrm{GHz}, \varepsilon_{r}=2.55, h=0.159 \mathrm{~cm}$ $S_{e} \simeq(2 \times 30 /(3 \times 3 \times \sqrt{ } 2.35)=4.35 \mathrm{~cm}$
$S=S_{e}-4 \times 0.159 / \sqrt{ } 2.55=3.95 \mathrm{~cm}$
Taken $S=4 \mathrm{~cm}, H=3.46 \mathrm{~cm}, y=1.52 \mathrm{~cm}$
$f_{0}=3 \mathrm{GHz}, \mathrm{BW}=40 \mathrm{MHz}$, Gain $=6.26 \mathrm{~dB}$

Current Distribution and Radiation Pattern at 3.0 GHz

